Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex

Abstract

With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The global phylogeny of the MTBC.
Fig. 2: The global phylogeography of the human-adapted MTBC.
Fig. 3: The TB burden caused by each human-adapted MTBC lineage.
Fig. 4: Examples of dominant MDR MTBC genotypes.

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis report 2024 (WHO, 2024).

  2. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    Google Scholar 

  3. Farhat, M. et al. Drug-resistant tuberculosis: a persistent global health concern. Nat. Rev. Microbiol. 22, 617–635 (2024).

    CAS  PubMed  Google Scholar 

  4. Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 16, 202–213 (2018).

    CAS  PubMed  Google Scholar 

  5. World Health Organization. Roadmap for zoonotic tuberculosis (WHO, 2017).

  6. Orgeur, M., Sous, C., Madacki, J. & Brosch, R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 48, fuae006 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pepperell, C. S. Evolution of tuberculosis pathogenesis. Annu. Rev. Microbiol. 76, 661–680 (2022).

    CAS  PubMed  Google Scholar 

  8. Chiner-Oms, Á. et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci. Adv. 5, eaaw3307 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ceres, K. M., Stanhope, M. J. & Gröhn, Y. T. A critical evaluation of pangenomics, with reference to its utility in outbreak investigation. Microb. Genom. 8, mgen000839 (2022).

    PubMed  PubMed Central  Google Scholar 

  10. Stritt, C. & Gagneux, S. How do monomorphic bacteria evolve? The Mycobacterium tuberculosis complex and the awkward population genetics of extreme clonality. Peer Community J. 3, e92 (2023).

    Google Scholar 

  11. Meehan, C. J. et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat. Rev. Microbiol. 17, 533–545 (2019).

    CAS  Google Scholar 

  12. Brites, D. et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front. Microbiol. 9, 2820 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Malone, K. M. & Gordon, S. V. Mycobacterium tuberculosis complex members adapted to wild and domestic animals. Adv. Exp. Med. Biol. 1019, 135–154 (2017).

    CAS  PubMed  Google Scholar 

  14. Coscolla, M. et al. Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg. Infect. Dis. 19, 969–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Coscolla, M. et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb. Genom. 7, 000477 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guyeux, C. et al. Newly identified Mycobacterium africanum lineage 10, central Africa. Emerg. Infect. Dis. 30, 560–563 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vågene, Å. J. et al. Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nat. Commun. 13, 1195 (2022).

    PubMed  PubMed Central  Google Scholar 

  19. Orgeur, M. et al. Pathogenomic analyses of Mycobacterium microti, an ESX-1-deleted member of the Mycobacterium tuberculosis complex causing disease in various hosts. Microb. Genom. 7, 000505 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wells, A. Q. Tuberculosis in wild voles. Lancet 229, 1221 (1937).

    Google Scholar 

  21. Ghielmetti, G. et al. Mycobacterium microti infections in free-ranging red deer (Cervus elaphus). Emerg. Infect. Dis. 27, 2025–2032 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brynildsrud, O. B. et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Sci. Adv. 4, eaat5869 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Zwyer, M. et al. A new nomenclature for the livestock-associated Mycobacterium tuberculosis complex based on phylogenomics. Open Res. Eur. 1, 100 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Loiseau, C. et al. An African origin for Mycobacterium bovis. Evol. Med. Public Health 2020, 49–59 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. Pereira, A. C., Pinto, D. & Cunha, M. V. First time whole genome sequencing of Mycobacterium bovis from the environment supports transmission at the animal–environment interface. J. Hazard. Mater. 472, 134473 (2024).

    CAS  PubMed  Google Scholar 

  26. Allen, A. R., Ford, T. & Skuce, R. A. Does Mycobacterium tuberculosis var. bovis survival in the environment confound bovine tuberculosis control and eradication? A literature review. Vet. Med. Int. 2021, 8812898 (2021).

    PubMed  PubMed Central  Google Scholar 

  27. Duffy, S. C., Marais, B., Kapur, V. & Behr, M. A. Zoonotic tuberculosis in the 21st century. Lancet Infect. Dis. 24, 339–341 (2024).

    PubMed  Google Scholar 

  28. Refaya, A. K. et al. Whole-genome sequencing of a Mycobacterium orygis strain isolated from cattle in Chennai, India. Microbiol. Resour. Announc. 8, e01080–e0119 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Jawahar, A., Dhinakar Raj, G., Pazhanivel, N. & Karthik, K. Gross and histopathological features of tuberculosis in cattle, buffalo and spotted deer (Axis axis) caused by Mycobacterium orygis. J. Comp. Pathol. 208, 15–19 (2024).

    PubMed  Google Scholar 

  30. Loiseau, C. et al. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat. Commun. 14, 1988 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chitwood, M. H. et al. The recent rapid expansion of multidrug resistant Ural lineage Mycobacterium tuberculosis in Moldova. Nat. Commun. 15, 2962 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goig, G. A. et al. Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. Lancet Microbe 4, e506–e515 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown, T. S. et al. Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa. Proc. Natl Acad. Sci. USA 116, 23284–23291 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Jong, B. C., Antonio, M. & Gagneux, S. Mycobacterium africanum — review of an important cause of human tuberculosis in West Africa. PLoS Negl. Trop. Dis. 4, e744 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Firdessa, R. et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg. Infect. Dis. 19, 460–463 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Ngabonziza, J. C. S. et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat. Commun. 11, 2917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Comas, I. et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in sub-Saharan Africa. Curr. Biol. 25, 3260–3266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat. Genet. 45, 172–179 (2013).

    CAS  PubMed  Google Scholar 

  39. Yenew, B. et al. A smooth tubercle bacillus from Ethiopia phylogenetically close to the Mycobacterium tuberculosis complex. Nat. Commun. 14, 7519 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Neill, M. B. et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol. Ecol. 28, 3241–3256 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Rutaihwa, L. K. et al. Multiple introductions of Mycobacterium tuberculosis lineage 2–Beijing into Africa over centuries. Front. Ecol. Evol. 7, 112 (2019).

    Google Scholar 

  42. Menardo, F. et al. Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean rim. F1000Res. 10, 60 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shuaib, Y. A. et al. Origin and global expansion of Mycobacterium tuberculosis complex lineage 3. Genes 13, 990 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zwyer, M. et al. Back-to-Africa introductions of Mycobacterium tuberculosis as the main cause of tuberculosis in Dar es Salaam, Tanzania. PLoS Pathog. 19, e1010893 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. López, M. G. et al. Tuberculosis in Liberia: high multidrug-resistance burden, transmission and diversity modelled by multiple importation events. Microb. Genom. 6, e000325 (2020).

    PubMed  PubMed Central  Google Scholar 

  46. Stucki, D. et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat. Genet. 48, 1535–1543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 6, e311 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Kay, G. L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat. Commun. 6, 6717 (2015).

    PubMed  Google Scholar 

  49. Sabin, S. et al. A seventeenth-century Mycobacterium tuberculosis genome supports a Neolithic emergence of the Mycobacterium tuberculosis complex. Genome Biol. 21, 201 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Silcocks, M. & Dunstan, S. J. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun. Biol 6, 1037 (2023).

    Google Scholar 

  52. Menardo, F., Duchêne, S., Brites, D. & Gagneux, S. The molecular clock of Mycobacterium tuberculosis. PLoS Pathog. 15, e1008067 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Menardo, F., Gagneux, S. & Freund, F. Multiple merger genealogies in outbreaks of Mycobacterium tuberculosis. Mol. Biol. Evol. 38, 290–306 (2021).

    CAS  PubMed  Google Scholar 

  54. Duchêne, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Wiens, K. E. et al. Global variation in bacterial strains that cause tuberculosis disease: a systematic review and meta-analysis. BMC Med. 16, 196 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. World Health Organization. Global tuberculosis report 2022 (WHO, 2022).

  57. Netikul, T., Palittapongarnpim, P., Thawornwattana, Y. & Plitphonganphim, S. Estimation of the global burden of Mycobacterium tuberculosis lineage 1. Infect. Genet. Evol. 91, 104802 (2021).

    PubMed  Google Scholar 

  58. Mitchison, D. A., Selkon, J. B. & Lloyd, J. Virulence in the guinea-pig, susceptibility to hydrogen peroxide, and catalase activity of isoniazid-sensitive tubercle bacilli from south Indian and British patients. J. Pathol. Bacteriol. 86, 377–386 (1963).

    CAS  PubMed  Google Scholar 

  59. Bottai, D. et al. TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat. Commun. 11, 684 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bateson, A. et al. Ancient and recent differences in the intrinsic susceptibility of Mycobacterium tuberculosis complex to pretomanid. J. Antimicrob. Chemother. 77, 1685–1693 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rupasinghe, P. et al. Refined understanding of the impact of the Mycobacterium tuberculosis complex diversity on the intrinsic susceptibility to pretomanid. Microbiol. Spectr. 12, e0007024 (2024).

    PubMed  Google Scholar 

  63. Stanley, S. et al. Identification of bacterial determinants of tuberculosis infection and treatment outcomes: a phenogenomic analysis of clinical strains. Lancet Microbe 5, e570–e580 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Van Rie, A. et al. Balancing access to BPaLM regimens and risk of resistance. Lancet Infect. Dis. 22, 1411–1412 (2022).

    PubMed  Google Scholar 

  65. Borrell, S. et al. Reference set of Mycobacterium tuberculosis clinical strains: a tool for research and product development. PLoS ONE 14, e0214088 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Du, D. H. et al. The effect of M. tuberculosis lineage on clinical phenotype. PLoS Glob. Public Health 3, e0001788 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. An ancestral mycobacterial effector promotes dissemination of infection. Cell 185, 4507–4525.e18 (2022).

  68. Holt, K. E. et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat. Genet. 50, 849–856 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Freschi, L. et al. Population structure, biogeography and transmissibility of Mycobacterium tuberculosis. Nat. Commun. 12, 6099 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gröschel, M. I. et al. Differential rates of Mycobacterium tuberculosis transmission associate with host–pathogen sympatry. Nat. Microbiol. 9, 2113–2127 (2024).

    PubMed  Google Scholar 

  71. Coussens, A. K. et al. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir. Med. 12, 484–498 (2024).

    PubMed  PubMed Central  Google Scholar 

  72. Long, R. et al. The association between phylogenetic lineage and the subclinical phenotype of pulmonary tuberculosis: a retrospective 2-cohort study. J. Infect. 88, 123–131 (2024).

    CAS  PubMed  Google Scholar 

  73. Brites, D. & Gagneux, S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol. Rev. 264, 6–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl Acad. Sci. USA 101, 4871–4876 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baker, L., Brown, T., Maiden, M. C. & Drobniewski, F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Dis. 10, 1568–1577 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 2869–2873 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Reed, M. B. et al. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J. Clin. Microbiol. 47, 1119–1128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fenner, L. et al. HIV infection disrupts the sympatric host–pathogen relationship in human tuberculosis. PLoS Genet. 9, e1003318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Q. et al. Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 118, e2017831118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Luo, Y. et al. Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis. Nat. Commun. 15, 10393 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, Z. M. et al. Genome-to-genome analysis reveals associations between human and mycobacterial genetic variation in tuberculosis patients from Tanzania. Preprint at medRxiv https://doi.org/10.1101/2023.05.11.23289848 (2023).

  82. Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Coscolla, M. et al. M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18, 538–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McHenry, M. L. et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: evidence for coevolution? PLoS Genet. 16, e1008728 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Woolhouse, M. E. J., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat. Genet. 32, 569–577 (2002).

    CAS  PubMed  Google Scholar 

  86. Osei-Wusu, S. et al. Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity. Front. Cell. Infect. Microbiol. 13, 1163993 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Asante-Poku, A. et al. Mycobacterium africanum is associated with patient ethnicity in Ghana. PLoS Negl. Trop. Dis. 9, e3370 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Asante-Poku, A. et al. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect. Dis. 16, 385 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Hiza, H. et al. Bacterial diversity dominates variable macrophage responses of tuberculosis patients in Tanzania. Sci. Rep. 14, 9287 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Borrell, S. & Gagneux, S. Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 13, 1456–1466 (2009).

    CAS  PubMed  Google Scholar 

  91. Torres Ortiz, A. et al. Genomic signatures of pre-resistance in Mycobacterium tuberculosis. Nat. Commun. 12, 7312 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ebrahimi-Rad, M. et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis. 9, 838–845 (2003).

    PubMed  Google Scholar 

  93. Werngren, J. & Hoffner, S. E. Drug-susceptible Mycobacterium tuberculosis Beijing genotype does not develop mutation-conferred resistance to rifampin at an elevated rate. J. Clin. Microbiol. 41, 1520–1524 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet. 45, 784–790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Carey, A. F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog. 14, e1006939 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Castro, R. A. D. et al. The genetic background modulates the evolution of fluoroquinolone-resistance in Mycobacterium tuberculosis. Mol. Biol. Evol. 37, 195–207 (2020).

    CAS  PubMed  Google Scholar 

  97. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    CAS  PubMed  Google Scholar 

  98. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Merker, M. et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. eLife 7, e38200 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Gygli, S. M. et al. Prisons as ecological drivers of fitness-compensated multidrug-resistant Mycobacterium tuberculosis. Nat. Med. 27, 1171–1177 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Merker, M. et al. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat. Commun. 13, 5105 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ngabonziza, J. C. S. et al. Multidrug-resistant tuberculosis control in Rwanda overcomes a successful clone that causes most disease over a quarter century. J. Clin. Tuberc. Other Mycobact. Dis. 27, 100299 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Eldholm, V. et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat. Commun. 6, 7119 (2015).

    CAS  PubMed  Google Scholar 

  105. Dixit, A. et al. Modern lineages of Mycobacterium tuberculosis were recently introduced in western India and demonstrate increased transmissibility. Open Forum Infect. Dis. 8, 783–784 (2021).

    PubMed Central  Google Scholar 

  106. Shanmugam, S. K. et al. Mycobacterium tuberculosis lineages associated with mutations and drug resistance in isolates from India. Microbiol. Spectr. 10, e0159421 (2022).

    PubMed  Google Scholar 

  107. Dreyer, V. et al. High fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai metropolitan region. Genome Med. 14, 95 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Castro, R. A. D., Borrell, S. & Gagneux, S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol. Rev. 45, fuaa071 (2021).

    CAS  PubMed  Google Scholar 

  109. Morales-Arce, A. Y., Sabin, S. J., Stone, A. C. & Jensen, J. D. The population genomics of within-host Mycobacterium tuberculosis. Heredity 126, 1–9 (2021).

    PubMed  Google Scholar 

  110. Trauner, A. et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol. 18, 71 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Nimmo, C. et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 55, 102747 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 10, e61805 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, Q. et al. Mycobacterium tuberculosis clinical isolates carry mutational signatures of host immune environments. Sci. Adv. 6, eaba4901 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith, T. M. et al. Rapid adaptation of a complex trait during experimental evolution of Mycobacterium tuberculosis. eLife 11, e78454 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, Q. et al. Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci. Rep. 5, 17507 (2015).

    Google Scholar 

  117. Moreno-Molina, M. et al. Genomic analyses of Mycobacterium tuberculosis from human lung resections reveal a high frequency of polyclonal infections. Nat. Commun. 12, 2716 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Martin, C. J. et al. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 8, e00312–e00317 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Levin, B. R. & Bull, J. J. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 2, 76–81 (1994).

    CAS  PubMed  Google Scholar 

  120. Cadena, A. M. et al. Concurrent infection with Mycobacterium tuberculosis confers robust protection against secondary infection in macaques. PLoS Pathog. 14, e1007305 (2018).

    PubMed  PubMed Central  Google Scholar 

  121. Nemeth, J. et al. Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLoS Pathog. 16, e1008655 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ganchua, S. K. et al. Antibiotic treatment modestly reduces protection against Mycobacterium tuberculosis reinfection in macaques. Infect. Immun. 92, e0053523 (2024).

    PubMed  Google Scholar 

  123. Andrews, J. R. et al. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Guerra-Assunção, J. A. et al. Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J. Infect. Dis. 211, 1154–1163 (2015).

    PubMed  Google Scholar 

  125. Cancino-Muñoz, I. et al. Cryptic resistance mutations associated with misdiagnoses of multidrug-resistant tuberculosis. J. Infect. Dis. 220, 316–320 (2019).

    PubMed  PubMed Central  Google Scholar 

  126. Abascal, E. et al. In-depth analysis of a mixed Mycobacterium tuberculosis infection involving a multidrug-resistant strain and a susceptible strain. Clin. Microbiol. Infect. 27, 641–643 (2021).

    CAS  PubMed  Google Scholar 

  127. van Rie, A. et al. Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am. J. Respir. Crit. Care Med. 172, 636–642 (2005).

    PubMed  PubMed Central  Google Scholar 

  128. Zetola, N. M. et al. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J. Clin. Microbiol. 52, 2422–2429 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. Shin, S. S. et al. Mixed Mycobacterium tuberculosis-strain infections are associated with poor treatment outcomes among patients with newly diagnosed tuberculosis, independent of pretreatment heteroresistance. J. Infect. Dis. 218, 1974–1982 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Cohen, T. et al. Within-host heterogeneity of Mycobacterium tuberculosis infection is associated with poor early treatment response: a prospective cohort study. J. Infect. Dis. 213, 1796–1799 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Chen, Y. et al. Whole-genome sequencing exhibits better diagnostic performance than variable-number tandem repeats for identifying mixed infections of Mycobacterium tuberculosis. Microbiol. Spectr. 11, e0357022 (2023).

    PubMed  Google Scholar 

  132. Asare-Baah, M., Séraphin, M. N., Salmon, L. A. T. & Lauzardo, M. Effect of mixed strain infections on clinical and epidemiological features of tuberculosis in Florida. Infect. Genet. Evol. 87, 104659 (2021).

    CAS  PubMed  Google Scholar 

  133. Pandey, P. et al. Mycobacterium tuberculosis polyclonal infections through treatment and recurrence. PLoS ONE 15, e0237345 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Crowder, R. et al. Impact of heteroresistance on treatment outcomes of people with drug-resistant TB. IJTLD Open 10, 466–472 (2024).

    Google Scholar 

  135. McIvor, A., Koornhof, H. & Kana, B. D. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog. Dis. 75, ftx020 (2017).

    Google Scholar 

  136. Séraphin, M. N. et al. Direct transmission of within-host Mycobacterium tuberculosis diversity to secondary cases can lead to variable between-host heterogeneity without de novo mutation: a genomic investigation. EBioMedicine 47, 293–300 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Walter, K. S. et al. Signatures of transmission in within-host Mycobacterium tuberculosis complex variation: a retrospective genomic epidemiology study. Lancet Microbe 6, 100936 (2024).

    PubMed  PubMed Central  Google Scholar 

  138. Martin, M. A., Lee, R. S., Cowley, L. A., Gardy, J. L. & Hanage, W. P. Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission. Microb. Genom. 4, e000217 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Lee, R. S., Proulx, J.-F., McIntosh, F., Behr, M. A. & Hanage, W. P. Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing. eLife 9, e53245 (2020).

    PubMed  PubMed Central  Google Scholar 

  140. Gabbassov, E., Moreno-Molina, M., Comas, I., Libbrecht, M. & Chindelevitch, L. SplitStrains, a tool to identify and separate mixed Mycobacterium tuberculosis infections from WGS data. Microb. Genom. 7, 000607 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Votintseva, A. A. et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J. Clin. Microbiol. 55, 1285–1298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Goig, G. A. et al. Whole-genome sequencing of Mycobacterium tuberculosis directly from clinical samples for high-resolution genomic epidemiology and drug resistance surveillance: an observational study. Lancet Microbe 1, e175–e183 (2020).

    CAS  PubMed  Google Scholar 

  143. Doyle, R. M. et al. Direct whole-genome sequencing of sputum accurately identifies drug-resistant Mycobacterium tuberculosis faster than MGIT culture sequencing. J. Clin. Microbiol. 56, e00666–e00718 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Shockey, A. C., Dabney, J. & Pepperell, C. S. Effects of host, sample, and in vitro culture on genomic diversity of pathogenic mycobacteria. Front. Genet. 10, 460462 (2019).

    Google Scholar 

  145. Mariner-Llicer, C. et al. Genetic diversity within diagnostic sputum samples is mirrored in the culture of Mycobacterium tuberculosis across different settings. Nat. Commun. 15, 7114 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Genestet, C. et al. Subcultured Mycobacterium tuberculosis isolates on different growth media are fully representative of bacteria within clinical samples. Tuberculosis 116, 61–66 (2019).

    PubMed  Google Scholar 

  147. Yang, Z. et al. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front. Genet. 14, 1225248 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Brosch, R. et al. Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast 17, 111–123 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Domenech, P., Kolly, G. S., Leon-Solis, L., Fallow, A. & Reed, M. B. Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J. Bacteriol. 192, 4562–4570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Shitikov, E. A. et al. Unusual large-scale chromosomal rearrangements in Mycobacterium tuberculosis Beijing B0/W148 cluster isolates. PLoS ONE 9, e84971 (2014).

    PubMed  PubMed Central  Google Scholar 

  152. Karboul, A. et al. Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evol. Biol. 6, 107 (2006).

    PubMed  PubMed Central  Google Scholar 

  153. Merker, M., Kohl, T. A., Niemann, S. & Supply, P. The evolution of strain typing in the Mycobacterium tuberculosis complex. Adv. Exp. Med. Biol. 1019, 43–78 (2017).

    CAS  PubMed  Google Scholar 

  154. Bespiatykh, D., Bespyatykh, J., Mokrousov, I. & Shitikov, E. A comprehensive map of Mycobacterium tuberculosis complex regions of difference. mSphere 6, e0053521 (2021).

    CAS  PubMed  Google Scholar 

  155. Soto, C. Y. et al. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J. Clin. Microbiol. 42, 212–219 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Behruznia, M. et al. The Mycobacterium tuberculosis complex pangenome is small and driven by sub-lineage-specific regions of difference. eLife https://doi.org/10.1101/2024.03.12.584580 (2024)

  157. Stritt, C. et al. Large contribution of repeats to genetic variation in a transmission cluster of Mycobacterium tuberculosis. Preprint at bioRxiv https://doi.org/10.1101/2024.03.08.584093 (2024).

  158. Wang, L. et al. Multiple genetic paths including massive gene amplification allow to overcome loss of ESX-3 secretion system substrates. Proc. Natl Acad. Sci. USA 119, e2112608119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bolotin, E. & Hershberg, R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol. Evol. 7, 2173–2187 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Abrahams, J. S. et al. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb. Genom. 8, 000761 (2022).

    PubMed  PubMed Central  Google Scholar 

  161. Youngblom, M. A., Smith, T. M., Murray, H. J. & Pepperell, C. S. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. PLoS Pathog. 20, e1012124 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. Cold Spring Harb. Perspect. Biol. 7, a016592 (2015).

    PubMed  PubMed Central  Google Scholar 

  163. Weiner, B. et al. Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region. PLoS ONE 7, e26038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaufmann, S. H. E. Vaccine development against tuberculosis before and after COVID-19. Front. Immunol. 14, 1273938 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Eldholm, V., Rønning, J. O., Mengshoel, A. T. & Arnesen, T. Import and transmission of Mycobacterium orygis and Mycobacterium africanum, Norway. BMC Infect. Dis. 21, 562 (2021).

    PubMed  PubMed Central  Google Scholar 

  166. Bifani, P. J. et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275, 452–457 (1996).

    CAS  PubMed  Google Scholar 

  167. Namouchi, A., Didelot, X., Schöck, U., Gicquel, B. & Rocha, E. P. C. After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res. 22, 721–734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Pepperell, C. S. et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog. 9, e1003543 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Johri, P. et al. Recommendations for improving statistical inference in population genomics. PLoS Biol. 20, e3001669 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rahman, S., Kosakovsky Pond, S. L., Webb, A. & Hey, J. Weak selection on synonymous codons substantially inflates dN/dS estimates in bacteria. Proc. Natl Acad. Sci. USA 118, e2023575118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Morales-Arce, A. Y., Harris, R. B., Stone, A. C. & Jensen, J. D. Evaluating the contributions of purifying selection and progeny-skew in dictating within-host Mycobacterium tuberculosis evolution. Evolution 74, 992–1001 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Menardo, F. Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. eLife 11, e76780 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Stimson, J. et al. Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions. Mol. Biol. Evol. 36, 587–603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. du Plessis, L. & Stadler, T. Getting to the root of epidemic spread with phylodynamic analysis of genomic data. Trends Microbiol. 23, 383–386 (2015).

    PubMed  Google Scholar 

  176. Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

    PubMed  Google Scholar 

  177. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    PubMed  Google Scholar 

  178. Green, A. G. et al. Analysis of genome-wide mutational dependence in naturally evolving Mycobacterium tuberculosis populations. Mol. Biol. Evol. 40, msad131 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Brunner, V. M. & Fowler, P. W. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb. Genom. 10, 001187 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49, 395–402 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ektefaie, Y., Dixit, A., Freschi, L. & Farhat, M. R. Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences. Lancet Microbe 2, e96–e104 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance, second edition (WHO, 2023).

  183. World Health Organization. Consolidated guidelines on tuberculosis: module 4: treatment: drug-susceptible tuberculosis treatment (WHO, 2022).

  184. Goig, G. A. et al. Transmission as a key driver of resistance to the new tuberculosis drugs. N. Engl. J. Med. 392, 97–99 (2025).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all other members of their group for the stimulating discussions. Their work is supported by the Swiss National Science Foundation (grants 320030-227432, 320030L-231163 and CRSII5_213514) and the European Research Council (883582-ECOEVODRTB).

Author information

Authors and Affiliations

Authors

Contributions

G.A.G., E.M.W., C.L., C.S., L.B., S.B., D.B. and S.G. researched data for the article. G.A.G., E.M.W., C.L., C.S., S.B., D.B. and S.G. contributed substantially to discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sebastien Gagneux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Sarah Fortune, Guislaine Refregier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goig, G.A., Windels, E.M., Loiseau, C. et al. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 23, 602–614 (2025). https://doi.org/10.1038/s41579-025-01159-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-025-01159-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology